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/ABSTRACT. The advantages and disadvantages of combining the func-

2+ tions of source coding (®data compression®) and channel coding
i('error correction®) into a single coding unit are considered.
Particular attention is given to linear encoders, both for sources
and for channels, because their ease of implementation makes their
juse desirable in practice. It is shown that, without loss of
optimality, a joint source/channel linear encoder may be used when
‘the goal is the distortionless reproduction of the source at the
‘destination. On the other hand, it is shown that in general there
is an inherent and significant loss of optimality if a joint source/
‘channel linear encoder is used when the goal is relaxed to repro-

duction of the source within some specified non-negligible dis-
tortion.
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1. INTRODUCTION ; :

Our aim in this tutorial paper is to treat the separability
1 of the two basic coding functions that arise in communications,
namely source coding and channel coding, first in the general |
- case and then in the important practical case when these functions ]
!} are both linear. We shall find that the desirability of joint

_ linear source/channel coding is closely (and, to us, surprisingly)
5 linked to the degree of fidelity specified in the reconstruction

‘7 of the source at the destination. :
S

iy
50 *This research was supported by the Office of Naval Research under
"1 Contract ONR-N00014-~64-C-1183.
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The model of a communications system with separate source
,and channel coding is shown in Fig. 1.

: i : v, S
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o, Fig. 1 A Digital Communications System with Separate Source
and Channel Coding

It will be noted that there are three different subscripts on
) the various symbols shown in Fig. 1, namely, i, j, and k. We use
_ this artifice to distinguish between sequences that may not be
 'equi-numerous over a long time inverval. For instance, there may
2Y be more source output digits per second, say, than encoded source
gg_dlglts per second--in fact, we hope that there are many more so
V%[‘that the source encoder is doing well its task of "data compres-
5 'sion". Also for instance, there may be fewer encoded source

' digits per second than encoded channel digits per second--we may
! be forced into this situation by the need to insert redundancy
i into the channel input digits so that the channel decoder can do
0 'well its task of "error correction".

I8 Roughly speaking, we may use the terms "source coding",
39 compression", and "redundancy removal" as synonymous.
+0 1y speaking, we may use the terms "channel coding", "error cor-

'l 'rection”, and "redundancy insertion" as synonymous. A wag might

. accuse the International Brotherhood of Information Theorists of

» featherbedding: it provides jobs for those who take out redun-

-t} dancy and jobs for those who put redundancy back in, at least
r_whun source coding and channel coding are performed separately as'
n_qhown in Fig. 1. But it is a serious question to ask whether one
box, a "joint source/channel encoder" as shown in Fig. 2, couldn't
15 do a better job (or at least do the same job more economically)
‘than does the tandem combination of the "source encoder" and "chan-
71 nel encoder" boxes in Fig. 1. As we shall soon be seeing, this

! simple question has a rather complicated answer.
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In fact, one of the important results in Shannon's celebrated
1948 paper” was his demonstration that the source and channel cod-
1ing functions are fundamentally separable in the sense that, with-
:out loss of efficiency in the use of a given channel to transmit

‘a given source
i

Y X

Discrete Source/Channel
Information Encoder -
! Source
: Discrete
Channel
| u gors o Y TR
: i k

iEEEéEﬁati°nl Source/Channel - g
Decoder '

|
E

Fig. 2 A Digital Communications System with Joint Source/Channel
Coding i

|

I

with some specified fidelity to a destination, these two coding
subsystems can be designed entirely independently. One can always
design an optimum system by combining (1) a source encoder which
has been designed to transform (at least, approximately) the source
output into a stream of independent binary digits, each equally
likely to be a 0 or a 1, and (2) a channel encoder which has been
designed quite independently of the actual statistics for its in-
put binary digits (i.e., has been designed for use with a maximum-
likelihood decoder). Fano? has aptly commented on the significance
of this fundamental separability: it means that those parts of |
the communications system to the right of the dashed line in Fig. 1
can always be designed, with no loss of optimality, as a system to
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transmit binary digits reliably. Binary digits are a kind of
standard interface between the source coding world and the channel
coding world, and one pays no surtax in efficiency for crossing |
at this interface.

As characteristic as the generality of the above-stated sepa-
rability result of Shannon is the fact that his 1948 paper gives '
little clue as to how complex an efficient communications system
becomes when the source and channel coding functions are separated
as in Fig. 1. With tongue-in-cheek, we now assert: |

For a given efficiency (measured in number of source
letters transmitted per use of the channel and fidelity (measured
in the quality of the source reproduction at the destination)
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achievable by separate source and channel coding for a given
’_L_ source and a given channel, there always exists a joint source/
5_ichannel coding scheme for the same source and channel that is at
3L_;least as efficient, that gives at least as much fidelity, and is
7 _'no more complex than the separate coding system.
3 |

Y |Proof: Let Fig. 1 be a diagram of the hypothesized separate sys-—
10 'tem. Then, in Fig. 1, draw a large box to enclose the "source

<>>ll‘encoder" and "channel encoder". Draw a second such box to enclose

12 'the "channel Jecoder" and "source decoder". Call the first new

| ) 'box the "source/channel encoder" and call the second new box the
"source/channel decoder". You have just constructed a joint

10 'source/channel coding system that satisfies the assertion in the

% theorem. (Naturally, you might be able to build a simpler joint

|7 'system that works at least as well; in fact, you might be able to

18 build a far simpler system!)

Ji5

20 Its triviality not withstanding, Theorem 1 does illuminate

21 the chief attractive feature of joint source/channel coding,

72 namely, the possible reduction in complexity compared to a similar-
5 ly-performing system with separate source and channel coding. We
t lwill pursue this point further, but not without first giving a

25 lcaveat: the reduction in complexity is purchased by a loss in

_W‘iglpxibilit ! If one opts for a jointly coded system, he can no

'/ 'longer easily adapt his system later to a different source; in the

24 separately designed system, one could continue to use the same

4 .channel coding subsystem, changing only the source encoder to the

) 'source encoder matched to the new source. Telephone companies

51 'worldwide are beginning to experience how painful this loss of

flexibility can be. Most telephone systems were originally design-

'3 ed as a joint source/channel coding system (even if the designers

ot iwere unawares that they were doing "coding") for transmitting the

40 ivoice source over a narrowband channel. As more and more of their

0 customers are changing from voice sources to data sources, the

37 ltelephone companies are madly scrambling to adapt their communica-

5 tions brontosaurus to its new environment.

i

|

i) '2. DEFINITIONS AND PRELIMINARIES

i So that we ca~ »egin to speak more precisely as engineers
15  should, we state a few definitions.
t

A binary memoryless source (BMS) with parameter q is a device

6 whose output is a sequence Ul' Uz, U3, ... of statistically inde-

‘¢ pendent, binary-valued random variables such that

ool P(Ui =1) =1 - P(Ui =0) =q, all i.

50 iThis is the only source that we shall consider hereafter; it is
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:i general enough for all our purposes even if it is a realistic
_:_model of only few actual information sources. When q = 1/2, the
5 'BMS is called the binary symmetric source (BSS); this very special
b _itype of BMS will play a key role in what follows. In fact, the
7 ;goal of the source/encoder in Fig. 1 is to make its output a good
8 approxlmatlon to the output of a BSS. i
9 ! !
101 A binary symmetric channel (BSC) with cross-over probabilityi
Firy: Line of Title -——pLL /P is memoryless channel which accepts binary digits at its input
g 12 jand emits binary digits at its output according to the following |
15 Iconditional probabilities: ;
e |
15 P(Y=1|X=0)=P(¥Y=0|X=1)=p
P 16 |
Nuthors' Names ~—p——
1 P(¥=1|X=1) =P(Y=0 | X=0) =1-p.
Authors® Aiiiliations ——y 18

Ii‘Again,'although the BSC is a realistic model for only a few actual

20 ‘discrete channels, it is general enough for our purposes.
2]
2 Next, we recall some well-known results from information

o5 'theory1r2f3: 4,

< <
Let h(x) = - x log X - (1 - x) log2 (1 - x) (where 0 = x = 1)

1§}
(371

1

‘,:c

f be the usual binary entropy function. Then the entropy (or "rate")
%ﬁ of the BMS is given by

9(

o= H(U) = h(q) bits/letter

o+
4& where "letter" means a binary digit emitted by the source. Accord-
—= ing to Shannon's Noiseless Coding Theorem, H(U) is the lower limit
- of rate, measured in encoded binary digits per source letter, for
<~ a source encoder such that the source output sequence can be re-
—4 ‘constructed from the encoder output with an arbitrarily-small

%' 'specified per-digit error probability. Equivalently, 1/H(U) is

B | the upper limit of compression, measured in source letters per

Ta encoded binary digit, which can be achieved by coding schemes

TU which convert the source output into a stream of binary digits

1 ifrom which the source output can be reconstructed with an arbitra-
5 'rily-small specified per-digit error probability.

2

Fy

1
. The capacity of the BSC is given by

C=1- h(p) bits/use,

|

5}* where a "use" means the transmission of a single binary digit

'L‘ ithrough the channel. According to Shannon's Noisy Coding Theorem, *
C is the upper limit of the rate of binary digits from a BSS (which

t; we can think of as being the output of the source encoder in Fig.

' 1) per channel use for a channel encoder such that there is a
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Litst e o) Lo == #—— channel decoder which delivers the BSS digits with an arbltrarlly—
_4, ‘small specified per-digit error probability.
-g_: A very fundamental characterization of an information source
7.

jis that given by its rate-distortion function. The rate-distortion

j% \function of the BMS is given by |
= | ol B
101 h(g) - h(D) Dbits/letter, O = D = min(q,1-q)
I u>flxnn¢»tixﬂ‘-«>17%§ R(D) =
,i%: 0, D> min(q,1-q)
o
e
_li;where D is the Hamming distortion defined by
§ 1 1
3 e UT‘ n A i
Authors’ Names - oo = 1ifi %—-Z——P(Ul }FU;) e e
s n->® i=1 '

vuthors” A ffiliagion. ,% ;
L i

5( i.e., D is the per-digit error probability in the source recon-

u{‘struction. According to Shannon's Theorem for Coding Relative

ug to a Fidelity Criterion, R(D) is the lower limit of rate, measured
95 'in binary digits per source letter, for a source encoder such that

’04 the source output sequence can be reconstructed from the encoder
g-}output with a distortion of D or less.
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3. LINEAR CODING

We now consider the special case of linear coding, both linear
source coding and linear channel coding. We begin with the latter
because the relevant theory5 is more widely known.

i A [block]) linear (N, K) binary channel encoder is specified '
by a K x N binary matrix G, of rank K, in the manner that

l X=Ve (1)

where V =

E:

[Vl, V2,... YK] is the information (row) vector, and

[Xl, XZ,... x ] is the codeword._ The operations in (1), and

lhereafter for all matrlces and vectors, are in the finite field
GF(2),.1 e., in modulo-two arithmetic. The code rate is R = K/N ‘
,blts/use. \
|

’ It is well-known '~ that linear channel coding is sufficient-
|ly general to attain the performance promised by the Noisy Coding’
‘Theorem (although we hasten to add that it is only the encoder
which is linear; a good channel decoder is always nonlinear!).

-2 That is, for a given € > 0 and a given R such that R < C, there I

ilexists, for sufficiently large N, linear (N, K) encoders and ap- ‘
propriate decoders such that :

A |
! -1—P(x#x)= ; *,
' !
,when this channel coding system is used on a BSC of capacity C, |
|regardless of the source statistics. In fact, it is known that no
other type of coding can give a significantly smaller decoding
error probability. Add to this the simplicity with which a llnear
!encoder can be implemented and you will see why no one seriously
lproposes the use of other than linear channel encoders. !
i |

|

For the given G, one can always find an (N-K) x N matrix H,
of rank N-K, such that }

. GeH =0 (2)

;where the superscript T denotes "transpose",
‘'vector X is a codeword if and only if

Moreover, a given

|

x 8" = 0. :

i3 If one writes the vector Y = [Yl, Yoreee YN] received over the BSC
- 'as Y =X+ E, where E = [El, EZ"" EN] is the error pattern, then

it follows from (2) that |

TR e N 'J

PR SRS

el
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S=YH =EH. (3)

5_IThe (row) vector S = [Sl, 82,... SN—K] is consequently called the

iszndrome because it depends only on the errror pattern E that has
S'linfected the codeword in its passage through the BSC.

"‘“% It is a well-known fact in coding theory that, without loss
“lof optimality, the decoder for a linear code can always be built
rf;in the manner shown in Fig. 3 such that the decoder first forms
t{ithe syndrome and then estimates the error pattern solely from
11 |this syndrome. One should not be misled by Fig. 3; the leftmost
75 |and

Firss Line of Title —»—

Authors™ Names ——p ‘
i

Authors” Affiliations —p2 | s
| = Error

: Pattern

= Estimator]

|
|
o

Encoderx
Inverse -

‘|><>

7S
o\

Fig. 3 A Syndrome Decoder for a Linear Code

1 rightmost boxes therein are linear devices and easy to implement,
o1 'but the box labelled "error pattern estimator" may be unimaginably
difficult to implement for very long and powerful codes.

We now turn to the description of linear source coding. A
i [block] linear (N, K) source encoder is specified by an (N-K) x N
(binary matrix H, of rank N-K, in the manner that

T

% v-ud @
79|

10 where U = [Ul, U2"" UN] is the source message, and

_‘}7y‘= (Vl, V2,... VN-K] is the encoded version of the source message.

[i?(We shall place the subscript ¢ or s on K, N, H and G whenzver the
7} | lcontext does not make it clear whether we are specifying the chan-
- nel encoder or the source encoder, respectively.) Thus, the com-

|, bression ratio of a linear (N, K) source encoder is i

|-

{27 A

] B = N/(N"K)-

<

-1 The rate of this linear source coding scheme is
2

1 A

ElL

1/8 = 1 - K/N.
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| | .- The reason for our choosing the above notation for linear

' -— 'source encoding is the interpretation that we now wish to make.

i L We first make the key observation that the error pattern E of the
2 BSC is statistically identical to the output vector U of a BMS
'with parameter g equal to p. Thus, we are always free to con-
'sider that a linear source encoder treats the output of the BMS as
lan "error pattern" and forms the "syndrome" of this error pattern,
laccording to (4), which syndrome is then the encoded version of
the source message. Hence, we can always consider linear source
'codlng conceptually as shown in Fig. 4 where the source decoder
'is an "error pattern estimator". This interpretation of linear
-source codlng appeared first in the literature in the work of
ohnsorge and has been rather fully developed by Ancheta”’.
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FistLincol Tent —->—— pig. 4 The Syndrome-Source-Coding Interpretation of Linear

Source Coding

=— 4. JOINT LINEAR SOURCE/CHANNEL CODING--THE DISTORTIONLESS CASE

st We now consider linear source encoding when the goal is repro-
duction of the source with a negligibly small (but non-zero) proba-
bility € of digit error, so-called "distortionless coding".

Consider a BMS with parameter q where, for convenience with
29 no real loss of generality, we take O s q s 1/2. For the BSC with
_-crossover probability p equal to g, we know there is a linear chan-

23 nel coding scheme (G ' H ) such that, for any given § > 0, it has

= R=c-6=1—h(q)-6

‘ and achieves per-digit error probability € or less in the estimated

7

o codeword X u G . For this channel coding scheme, the per-digit
j error probablllty in the vector E of Fig. 3 coincides with that in
ﬁf the vector X. Thus, if we use these same two matrices as the G

77 and H of the scurce coding scheme of Fig. 4, it follows that the
)

'1|per—dlglt error probability of the reconstruction U is again the

|1 same, i.e., is or less. (Here we assume that the source coding
‘v scheme uses the same error pattern estimator as did the channel




I
|
|
|
|
|

U { I { > I1 - ]O -
L]
»-- coding scheme.) The compression ratio achieved is
- gl B o g |
2| N-K 1-R h(q)+6 H(U)+8
/
—%— which is arbitrarily close to the upper limit of achievable com-
TT;‘pre551on ratios, 1/H(U), established by the Noiseless Coding
| Theorem. Thus, as has been observed by Hellman® and Ancheta7,
!h\thhnw»Fruh~~'>f7 linear source encoding entails no loss of optimality when the
—=!goal is dist.rtionless reproduction of the source.
30w
%é~; But we now recall that linear channel coding never entails a
)
1C loss of optimality. Moreover, if we have
Authors’ Names ——»——2 - =
'ﬁ? R, =K =K
wthors™ Affiliations —p =2 = = <

(
%; (which can always be achieved simply by redefining the block
~— lengths, if necessary, to be integer multiples of the original
ek

— block lengths), then we can write for the tandem combinaticon of
-~ the two linear systems
T

X=VG =UH G.
=g S G el - R

26 . AR T i
——= It follows then that we can consider A = H G to be the defining
U3 matrix of a linear joint source/channel encoder which operates as

4)'

1\ —}S—;HA_

Sl AV)

39 It follows, as first observed by Hellmang, that joint linear

3% source/channel encoding entails no loss of optimality when the

34 goal is distortionless reproduction of the source. Moreover, the
35 implementation of the matrix A = HY G cannot avoid being far sim-

pler in general that the separate lmpiementatlon of the matrices
Hg and G-

50 Example: Suppose that we are to transmit, with negligibly small

| distortion, a BMS with g = .10 through a BSC with p = .10. Since
1 h(.10) = 0.47, it follows that a compression ratio of 1/h(.10) =
17 '2.13 can be approached, and that a channel coding rate of C =

131 - h(.10) = .53 can be approached. Thus, an overall efficiency
.{ of (2.13)x(0.53) = 1.13 source letters per channel use can be ap-
15 proached arbltrarl’j closely with joint source/channel linear cod-
4, ing, and no larger overall efficiency can be obtained by any dis-
47 tortionless coding scheme. 1In particular, for suitably large K,

iy we can find an R = 1/2 linear channel encoder specified by
I‘I i

‘}(!)5 GC = [IK P]
)

g

et A
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.. (where P is some X x K binary matrix) and a B = 2 linear source
encoder

T
Hs = [P IK]

{
|
ik
|
|

8 |such that the overall distortion is smaller than the specified

:Z|small amount. But then
10
11| P p P
My RSl e
15| o
71!

l)ldescrlbes a linear joint source/channel encoder which has overall!
-7~‘eff1c1ency BR = 1, quite close to the theoretical limit. More-

13 ifrom a device which implements only P, whereas implementation of

T 'afid channel coding. It is interesting to note that A is an N x N’
— matrix, but that its rank is only N/2; this lack of full rank

==
o5 lappears to be fundamental for useful linear joint source/channel
<~ lencoders.

We conclude that joint linear source/channel coding is a
o nlghly attractive approach when the goal is the distortionless
-;tfreproductlon of the source.

%2 5. JOINT LINEAR SOURCE/CHANNEL CODING--THE NON-NEGLIGIBLE
DISTORTION CASE

fqreproduction (e.g., D =1/10). The rate-distortion function of
— the source specifies how such a relaxed demand on the fidelity of
reconstruction can be translated into more efficient use of the
= channel, i.e., fewer uses of the channel for each source letter.

Following recent work by Anchetag, we now show that, for a
given D (non-negligibly) greater than zero, -the performance of

{,pression ratio 1/R(D) which Shannon has shown can be approached
arbitrarily closely by some sort of source coding.
_? The key (and clever) idea in Ancheta's proof that linear

— source encoding for non-negligible distortion in inherently sub-
t)

= | With many actual data sources (e.g., with facsimile), one is
often content to accept non-negligible distortion D in the source'!

0 linear source coding is bounded in general strictly below the com-
—=

l
|

1qu and H_ would each require implementation of P in separate sourée

|
{

i
|
|
|
|
)
i

-~~~ optimal was his exploitation of the fact that a linear source en-

{j'coder "cannot see" a vector which lies in the null space of the
matrlx HT , i.e., its output is zero for any vector which could be
"'~the outpﬁt of the linear device wnich implements the matrix G .
-V'Con51der then the situation shown in Fig. 5, where we have megely
7;supplemented the source coding system of Fig. 4 by adding some

St it
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T ..+ devices that have no effect on the latter's operation. If D is
the per-digit
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() error probability in U for the linear source coding scheme, we
o, see from Fig. 5 that it is also the per-digit error probability in

2% X'. DNow, as is well-known in coding theory, given H , one can
'’ always choose Gs such that GS has an identity matrix in some K of

v
18]

D

'its columns. But then V' is just the vector composed of the K

Eﬂ!digits in these X positions of X'. It follows that the per-digit
4;7' ~

5. error probability in V' is at most (N/K)D. But, since this is

5 also the fidelity with which the BSS (not the BMS!) in Figure 5 is
'?ﬁ being transmitted through the BSC created by considering the out-

51 put of the BMS to be an error pattern E, and since K digits of the
3o BSS are being transmitted with N uses of this BSC with capacity
533/ =1 - h(g), it follows from the properties of the rate-distortion
y /function of the BSS that

o= >
20 | Mlxh( 2 = Ryag (g—n) =l—h(gD)

3 or, equivalently,
BT

. N A O
| D) =1-z(l-h@]l. (5)

!
19 |
iy We can put (5) into more revealing form in terms of
b i K
“‘, R 8 e = -—
K Stk e

f? Then (5) becomes
™ h(q)-RL
I8 > =

Gl DE@-R) N [ )

| 1=
= i

(6)
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Frvse 1 i ran . . where h™ (-) is the inverss (made unigue by restricting its valueé
to be between 0 and 1/2) of the binary entropy function.

The significance of (6) can perhaps be most easily seen by
its specialization to the BSS, i.e., to q = 1/2. Then h(q) =1 ,
nd (6) simplifies to i

D= (1 - R )/2. (7)

Szt

In Fig. 6a, we have plotted both the bound (7) on the attainable '
H‘dlstortlon D of a linear source coding scheme of rate RL for the |

‘Bss, together with the rate-distortion function R(D) = 1 - h(D) of
5
G Ithe BSS. This figure clearly illustrates how far away from optimal

Authors x“"“\""’T—Wa linear scurce coding system must be when a non-negligible D is -
2 ha T3 !s - . = .5 .78.
.\uﬂvws‘ﬁfhhdnuun,_,_?ﬁ specified. For example, with D = .11, R(D) 0 put RL 78
%TiThus the linear scheme can have at best B = 1/RL = 1.28, compared
20 |
2|? to the compression ratio 1/R(D) = 2 that can be approached by more
oo .general source coding schemes.
First Line of Tent —pad !

A similar interpretation can be made from Fig. 6b where we
o5 ‘have shown the rate-distortion function R(D) for the general BMS

oG (and also the corresponding bound on R from (6).

27 a

206 | ‘
o h(q) ’
== R
01 -

: :
3 oy :
34 D !
35 1/2 |

= ! (a) BSs

>
E7 4L i

_iﬁ,Fig. 6 Bounds on the Achievablc¢ Rate RL with Linear Source Coding

L Ancheta’ actually has a lot more to say about the non-opti-
mality of linear source coding with non-negiible distortion, but
iwe shall leave the rest for him to tell in his own publications, !
,except to mention his conjecture that the achievable RL is actual-

sk

|

]

'ly more strictly bounded away from R(D) according to the dashed
line shown in Fig. 6b.

|

|
1

. We now give a simple argument to show that the inherent lack
jof optimality of linear source coding in the non-negligible dis-
(tortion case implies in general an inherent lack of optimality for

l-,_-;r,

o

}(

' |
|
l

l
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5 linear joint source/channel encoding in the non-negligible dis-
tortion case.

Suppose that the N x N matrix A describes a linear joint
J*lsource/channel encode r,sfor g BMS and BSC, which achieves distor-
> tion D (where D is not negligibly small). Suppose that A has

' rank r. Then one can always find an r x N matrix H of rank r
‘! 'and r x N_ matrix G, of rank r such that a°= HT G . SThus, we can
First Line of ﬁ;h,u-pllAcon31der he matrix HT as describing a linear sougce encoder and
Aﬂ\the matrix b as descrlblng a linear channel encoder; the original
"Illnear joint®source/channel encoder is equivalent to separate en-
- coding with these derived linear encoders.

tthars' Names ..>}§; Let D'_be_the best obtainable-distortion-when-the BMS is re-

' lconstructed directly from the output of the linear source encoder
* Ariibiatioen. - »'\ HT. It follows that D' > D, because the best service which the

' channel encoder G can prov1de is to permit perfect transmission

" of the source encSder output to the best source reconstructor.

- Hence, the rate R of the linear source encoder must satisfy (6)

~ for the given distortion D.

=S, The overall efficiency of the linear separate source/channel
”f coding system (and hence also of the entirely equivalent original
‘U linear joint coding system) is B K= Rc/RL E-I/RL source letters

o4 per channel use, where the 1nequa11ty follows from the fact that
27 R_ < 1. On the other hand, there exist coding systems whose over-
S0 all efflClency approaches C/R(D) source letters per channel use,

| where C is the capacity of the BSC and R(D) is the rate-distortion
~,» function of the BMS. Thus, when, for a given D, the bound (6)

5 'specifies an R. such that > R(D)/C, then there is an inherent
5} loss of optlma&lty when linear joint source/channel encoding is
7, used. In other words, when the bound (6) gives an which exceeds

_R(D) by a factor of more than 1/C, then linear joint source/channel
4 encoding is sub-optimum.

7 ample: Consider the BSS together with the BSC having p = .10,
...and suppose that D = 1/4 is specified. Then, R(D) = h(1/2)-h(1/4)=
4] 1.19. From (6), we find RL = .50. Thus, RL is (.50)/(.19) = 2.63

Il times as great as R(D). But 1/C = 1.89. Because 2.63 > 1.89, it

"Ifollows that a linear joint source/channel coding system must be
"' sub-optimum. To put it another way, any such linear joint coding

system has an efficiency of at most 1/ = 2, whereas there exist
"'more general coding systems whose efficlency approaches C/R(D) =

ﬁ’ 2.79 source letters per channel use.

\‘

')' We should point out in closing that a joint linear source/
S0

~channel coding system can sometimes "accidently" be optimal when
. RL, as given by (6), exceeds R(D) by a factor of only 1/C or less.
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) ‘fﬂ In the above example, if we had takxen D = .10 rather than D = 1/4
' we would have found R = .80 and R(D) = .53 so that RL/R(D) =

’

i

G 11.51 < 1/C = 1.89, C/R(D)=1 is the maximum approachable efficency
|

i

{

i

|

But the "straight wire" encoder, which merely transmits the BSS

{
z"output directly over the channel, has efficiency 1 and distortion
9 |D = .10. We can consider this trivial but optimum coding scheme
70 |as the linear joint source/channel coding scheme with A = 1.

3 X o 711 | [The reason for this accidental optimality is that the given BSC |

I'““"‘*‘“‘"‘l‘“"‘“"{j]hal::pens to be the appropriate "forward channel" for the given
13 distortion D and the BSS, cf. Berger 4
4 !
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